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Introduction 

 The baseball analytics community has invented an overwhelming number of metrics to 
benchmark a baseball pitcher’s ability. Some metrics, like the ERA (Earned Run Average), focus on 
outcomes influenced by both the pitcher’s ability and external factors such as defensive performance. A 
desire to evaluate solely the pitcher’s skills led to the advent of FIP (Fielding Independent Pitching). FIP 
comprises outcomes that only the pitcher controls: number of home runs, walks, strikeouts, and batters 
hit by pitch; it removes the count of balls hit into the field of play.  

 FIP constitutes a prime candidate for Bayesian analysis for two reasons. First, one can 
reasonably believe that each player has an underlying FIP distribution, because FIP proxies for individual 
performance. Furthermore, a pitcher’s FIP distribution likely changes during his or her career, as skills 
mature during early career, peak, and then decline with aging. Consequently, one can only calculate FIP 
by individual player-seasons, or groupings of player-seasons, thereby leading to small sample sizes that 
render frequentist models inaccurate.  

 This paper develops and compares two Bayesian models for individual pitchers’ FIP component 
distributions during 2011 – 2013. The first model assumes that the FIP component statistics come from a 
common distribution across the three-year timeframe. The second model assumes that every pitcher’s 
performance follows a different distribution during each of the three seasons. We compare the models 
along their ability to predict the FIP components and ERA in 2014 – 2016. We find that the pitcher-
season specific model outperforms the three-year timeframe model in terms of estimating the FIP 
parameters. However, both models show improvements over observed FIP when predicting ERA over 
the upcoming three seasons. 

Data and Methodology 

 Before diving into methodology, let us first define a few key terms referenced throughout the 
paper: 

 Number of Batters Faced = HR + HBP + BB + SO + BIP, where HR = # of home runs, HBP = # of hits 
by pitch, BB = # of walks, SO = # of strikeouts, and BIP = balls in play. The first four statistics depend only 
on the pitcher’s performance (whereas BIP depends on defense performance as well), and are referred 
to as the “FIP component statistics” in the rest of this paper. 
 

 FIP = 
13∗𝐻𝑅+3∗(𝐻𝐵𝑃+𝐵𝐵)−2𝑆𝑂

𝐼𝑛𝑛𝑖𝑛𝑔𝑠 𝑃𝑖𝑡𝑐ℎ𝑒𝑑
+ 𝐹𝐼𝑃 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1; FIP constant varies annually, but is generally 

around 3.2 and is added to put FIP at the same scale as Earned Run Average (see appendix for formula). 
  

 ERA = 
9∗𝐸𝑎𝑟𝑛𝑒𝑑 𝑅𝑢𝑛𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑

𝐼𝑛𝑛𝑖𝑛𝑔𝑠 𝑃𝑖𝑡𝑐ℎ𝑒𝑑
 

  
 We leverage pitcher performance data at the player and season level from Lahman R package. 
We consider only pitchers with data for all five metrics (HR, HBP, BB, SO, and BIP) for 2011 – 2016; 2011 
– 2013 is used for modelling, and 2014 – 2016 is used for prediction comparison. We build models for a 
total of 50 pitchers and 150 player-seasons.  
 



 Let zi
(t)

 = [z1i
(t)

 z2i
(t)

 z3i
(t)

 z4i
(t)

 z5i
(t)] represent a pitcher i’s homeruns, walks, hits by pitch, strikeouts, 

and balls in play in season t. The last component, balls in play, is a nuisance parameter since we are only 
interested in measuring the four FIP components, but need BIP to ensure that the probabilities add up 
to 1. We use this likelihood to build two different Bayesian models. See appendix for full derivations of 
the posterior and details on the sampling method. 

 The first model assumes that a pitcher’s FIP component statistics come from a common 
distribution during 2011 - 2013: zi

(t)
  i.i.d.~ Multinom(ni; θ1i, θ2i, θ3i, θ4i, θ5i), where ni represents the total 

number of batters faced. Multinomial likelihood works well since the observed data zi
(t) are counts with 

probabilities that sum up to 1. Let θi = [θ1i, θ2i, θ3i, θ4i, θ5i]’ be the vector of rate of homeruns, walks, hits 
by pitch, strikeouts, and balls in play as percentage of numbers of batters faced. We assume a conjugate 

prior θi
 ~ Dir(α1i, α2i, α3i, α4i, α5i) and hyper-prior π(αi) ∝  

1

Г(𝛼1𝑖+ 𝛼2𝑖+ 𝛼3𝑖+ 𝛼4𝑖+ 𝛼5𝑖)
 . We use Gibbs-MH to 

sample the marginal posterior of αi and then draw θi|αi.  

 In the second model, we assume that the distributions of a pitcher’s FIP component statistics 
change every season: zi

(t)
 ~ Multinom(ni

(t); θ1i
(t),θ2i

(t),θ3i
(t),θ4i

(t)
 θ5i

(t)). Instead of assuming a joint prior 
across all three seasons, we designate a separate Dirichlet prior for each player-season. The model also 
incorporates historical data by designating the weighted sum of previous seasons’ observations as the 
components of the Dirichlet: 

𝜽𝒊
(𝒕)

 ~ Dir(∑
𝑧1𝑖

(𝑘)

𝑏𝑗−𝑘 +  1,𝑡
𝑘=1 ∑

𝑧2𝑖
(𝑘)

𝑏𝑗−𝑘 +  1,𝑡
𝑘=1  ∑

𝑧3𝑖
(𝑘)

𝑏𝑗−𝑘 +  1,𝑡
𝑘=1  ∑

𝑧4𝑖
(𝑘)

𝑏𝑗−𝑘 +  1, ∑
𝑧5𝑖

(𝑘)

𝑏𝑗−𝑘

𝑗
𝑘=1

𝑗
𝑘=1 +  1) 

where b represents a decay rate between 0 and 1 that weights the more recent years’ observations 
more heavily. In addition to the decay rate, we considered normalizing a player’s observed counts in a 
given season by the number of batters faced in that season. For example, if a pitcher faces 50 batters 
one season instead of the usual 200, his/her number of walks, strikeouts, etc. will necessarily be lower 
as well. Ultimately, we decided against normalizing because if a pitcher faced few batters in a given 
season, the data from that season will have less influence on the Dirichlet prior. Giving less weight to 
observations from small-sample-size seasons compared to seasons with larger sample size make sense, 
since the larger sample sizes necessarily contain more information and broader range of observations 
than the small sample sizes.  

The next section compares the two models along the following dimensions:  

 Which model more accurately predicts the FIP component statistics observed in 2014 – 2016? 

 Combining the posterior samples into a Bayesian FIP, which model more accurately predicts the 
ERA, and how does its accuracy compare with the frequentist FIP? 

 

 

 

 

 

 



Results and Discussion 

 

Table 1: Comparison of Posterior Predictive Values vs. Observed Data 

 % of players 
where 95% 
CI contains 
2014 – 2016 
observed # 
of walks 

% of players 
where 95% CI 
contains 2014 – 
2016 observed 
# of strikeouts  

% of players 
where 95% CI 
contains 2014 - 
2016 observed 
# of homeruns 

% of players 
where 95% CI 
contains 2014 – 
2016 observed 
# of hit by pitch 

% of players 
where 95% 
CI contains 
2014-2016 
observed # 
of balls in 
play 

Model I  24% 8% 16% 20% 10% 

Model II 34% 32% 52% 62% 52% 
 
Model 1 refers to the pitcher-specific model 
Model 2 refers to the pitcher-season specific model 

 
 FIP’s denominator is number of innings pitched in the denominator, while our estimated walk 
rates, strikeout rates etc. use the number of batters faced in the denominator, we multiply all of our 
estimated rates by the number of batters faced and divide by the number of innings pitched to 
make the numbers comparable. 

Table 32 Comparison of Predictiveness of Adjusted FIP vs. Traditional FIP of ERA 

 R2 when regress ERA on 
adjusted FIP (median / mode) 

Model I .1528 

Model II .1648 

Industry FIP .1034 

 

While the 95% credible intervals do not contain the observed values as much as one would hope, both 
models show a stronger correlation against ERA over the subsequent 3-years than using the purely the 
observed counts values to calculate FIP as seen in Table 2. Interestingly, we see in Table 1 that Model II 
significantly outperformed Model I when estimating the parameters of the two most unlikely categories, 
HR and HBP. It is possible that this is due to the hyper-prior in Model I producing overestimates of these 
values. Model II outperformed Model I  when considering the percentage of observed values within the 
credible intervals for all FIP rate parameters. 

 
Conclusion 

Model II outperforms Model I by all measures in our results. One could hypothesize many reasons for 
this. It may be that year-to-year fluctuations in a pitcher's underlying walk, strikeout, and home run 
rates are so great that assuming them to come from a common distribution is unwise. It's also possible 
that using a timeframe other than three seasons to build the model, and three seasons for prediction 

would improve results. Lastly, the selection of the hyper-prior π(αi) should be examined. One approach 
could be to use a hybrid version of the two models where the rates are assumed to come from a 
common distribution, but the prior is informed by the values for previous seasons. 
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Appendix 

Section 1: Formula and Definitions: 

FIP Constant = lgERA – (((13*lgHR)+(3*(lgBB+lgHBP))-(2*lgK))/lgIP) 
 

Section 2: Analytic Derivations and Sampling Method 

For a single pitcher i in season t, zi
(t)

 ~ Multinom(ni
(t); θ1i

(t),θ2i
(t),θ3i

(t),θ4i
(t)

 θ5i
(t)); ni

(t) represents the total 
number of batters faced in season t. Let θi

(t) = [θ1i
(t),θ2

(t),θ3i
(t),θ4i

(t), θ5i
(t)]’.  

Model 1: Pitcher-Specific Model 

For a single pitcher i in season t, zi
(t)

 ~ Multinom(ni
(t); θ1i,θ2i,θ3i,θ4i, θ5i); ni

(t) represents the total number of 
batters faced in season t. 

The likelihood function for the observed FIP components in each season for pitcher i is: 

L(𝒛𝒊
(𝒕)

|𝜽𝒊) = (
𝑛𝑖

(𝑡)

𝑧1𝑖
(𝑡)

 𝑧2𝑖
(𝑡)

 𝑧3𝑖
(𝑡)

 𝑧4𝑖
(𝑡)

 𝑧5𝑖
(𝑡)) (𝜃1𝑖)𝑧1𝑖

(𝑡)

 (𝜃2𝑖)𝑧2𝑖
(𝑡)

(𝜃3𝑖)𝑧3𝑖
(𝑡)

(𝜃4𝑖)𝑧4𝑖
(𝑡)

(𝜃5𝑖)𝑧5𝑖
(𝑡)

 

The joint likelihood across all three seasons is: 

L(𝒛𝒊
(𝟐𝟎𝟏𝟏)

, 𝒛𝒊
(𝟐𝟎𝟏𝟐)

, 𝒛𝒊
(𝟐𝟎𝟏𝟑)

|𝜽𝒊) = ∏ (
𝑛𝑖

(𝑡)

𝑧1𝑖
(𝑡)

 𝑧2𝑖
(𝑡)

 𝑧3𝑖
(𝑡)

 𝑧4𝑖
(𝑡)

 𝑧5𝑖
(𝑡)) (𝜃1𝑖)𝑧1𝑖

(𝑡)

 (𝜃2𝑖)𝑧2𝑖
(𝑡)

(𝜃3𝑖)𝑧3𝑖
(𝑡)

(𝜃4𝑖)𝑧4𝑖
(𝑡)

(𝜃5𝑖)𝑧5𝑖
(𝑡)

2013
𝑡=2011  

= [∏ (
𝑛𝑖

(𝑡)

𝑧
1𝑖
(𝑡)

 𝑧
2𝑖
(𝑡)

 𝑧
3𝑖
(𝑡)

 𝑧
4𝑖
(𝑡)

 𝑧
5𝑖
(𝑡))][(𝜃1𝑖)

∑ 𝑧1𝑖
(𝑡)2013

𝑡=2011  (𝜃2𝑖)
∑ 𝑧2𝑖

(𝑡)2013
𝑡=2011 (𝜃3𝑖)

∑ 𝑧3𝑖
(𝑡)2013

𝑡=2011 (𝜃4𝑖)
∑ 𝑧4𝑖

(𝑡)2013
𝑡=2011 (𝜃5𝑖)∑ 𝑧5𝑖

(𝑡)2013
𝑡=2011 ] 2013

𝑡=2011  

https://unbalanced.media/measuring-pitcher-performance-in-2017
https://unbalanced.media/measuring-pitcher-performance-in-2017


θi
 ~ Dir(α1i, α2i, α3i, α4i, α5i), so π(θi|αi) = 

Г(α1𝑖+ α2𝑖+ α3𝑖+ α4𝑖+ α5𝑖)

Г(α1𝑖)Г(α2𝑖)Г(α3𝑖)Г(α4𝑖)Г(α5𝑖)
(𝜃1𝑖)

α1𝑖  (𝜃2𝑖)
α2𝑖(𝜃3𝑖)

α3𝑖(𝜃4𝑖)
α4𝑖(𝜃5𝑖)

α5𝑖  

We also assume hyper-prior π(αi) ∝  
1

Г(𝛼1𝑖+ 𝛼2𝑖+ 𝛼3𝑖+ 𝛼4𝑖+ 𝛼5𝑖)
  

We previously considered using a flat hyper-prior π(αi) ∝ 𝑐, but that resulted in the Gibbs-MH sampler 
failing to converge. This was due to the fact that infinitely large values of α, can generate plausible θ so 
long as the αi remain in relative proportion with each other. 

The full posterior for pitcher i‘s statistics are: 

p(θi, αi|𝒛𝒊
(𝟐𝟎𝟏𝟏)

, 𝒛𝒊
(𝟐𝟎𝟏𝟐)

, 𝒛𝒊
(𝟐𝟎𝟏𝟑)

) ∝  L(𝒛𝒊
(𝟐𝟎𝟏𝟏)

, 𝒛𝒊
(𝟐𝟎𝟏𝟐)

, 𝒛𝒊
(𝟐𝟎𝟏𝟑)

|𝜽𝒊) ∗   π(θi|αi) * π(αi) 

∝  [(𝜃1𝑖)
∑ 𝑧1𝑖

(𝑡)2013
𝑡=2011  (𝜃2𝑖)

∑ 𝑧2𝑖
(𝑡)2013

𝑡=2011 (𝜃3𝑖)
∑ 𝑧3𝑖

(𝑡)2013
𝑡=2011 (𝜃4𝑖)

∑ 𝑧4𝑖
(𝑡)2013

𝑡=2011 (𝜃5𝑖)
∑ 𝑧5𝑖

(𝑡)2013
𝑡=2011 ] *  

 
Г(α1𝑖+ α2𝑖+ α3𝑖+ α4𝑖+ α5𝑖)

Г(α1𝑖)Г(α2𝑖)Г(α3𝑖)Г(α4𝑖)Г(α5𝑖)
(𝜃1𝑖)

α1𝑖  (𝜃2𝑖)
α2𝑖(𝜃3𝑖)

α3𝑖(𝜃4𝑖)
α4𝑖(𝜃5𝑖)

α5𝑖*
1

Г(𝛼1𝑖+ 𝛼2𝑖+ 𝛼3𝑖+ 𝛼4𝑖+ 𝛼5𝑖)
 

= 
1

Г(α1𝑖)Г(α2𝑖)Г(α3𝑖)Г(α4𝑖)Г(α5𝑖)
 * 

[(𝜃1𝑖)
∑ 𝑧1𝑖

(𝑡)2013
𝑡=2011 +α1𝑖  (𝜃2𝑖)

∑ 𝑧2𝑖
(𝑡)2013

𝑡=2011 +α2𝑖(𝜃3𝑖)
∑ 𝑧3𝑖

(𝑡)
+2013

𝑡=2011 α3𝑖(𝜃4𝑖)
∑ 𝑧4𝑖

(𝑡)
+α4𝑖

2013
𝑡=2011 (𝜃5𝑖)

∑ 𝑧5𝑖
(𝑡)

+α5𝑖
2013
𝑡=2011 ]   

 

The conditional p(θi|αi, 𝒛𝒊
(𝟐𝟎𝟏𝟏)

, 𝒛𝒊
(𝟐𝟎𝟏𝟐)

, 𝒛𝒊
(𝟐𝟎𝟏𝟑)

) 

∝  (𝜃1𝑖)
∑ 𝑧1𝑖

(𝑡)2013
𝑡=2011 +α1𝑖  (𝜃2𝑖)

∑ 𝑧2𝑖
(𝑡)2013

𝑡=2011 +α2𝑖(𝜃3𝑖)
∑ 𝑧3𝑖

(𝑡)
+2013

𝑡=2011 α3𝑖(𝜃4𝑖)
∑ 𝑧4𝑖

(𝑡)
+α4𝑖

2013
𝑡=2011 (𝜃5𝑖)

∑ 𝑧5𝑖
(𝑡)

+α5𝑖
2013
𝑡=2011  

 

The marginal posterior p(αi|𝒛𝒊
(𝟐𝟎𝟏𝟏)

, 𝒛𝒊
(𝟐𝟎𝟏𝟐)

, 𝒛𝒊
(𝟐𝟎𝟏𝟑)

)  

∝  ∫
1

Г(α1𝑖)Г(α2𝑖)Г(α3𝑖)Г(α4𝑖)Г(α5𝑖)
  

∗  [(𝜃1𝑖)
∑ 𝑧1𝑖

(𝑡)2013
𝑡=2011 +α1𝑖  (𝜃2𝑖)

∑ 𝑧2𝑖
(𝑡)2013

𝑡=2011 +α2𝑖(𝜃3𝑖)
∑ 𝑧3𝑖

(𝑡)
+2013

𝑡=2011 α3𝑖(𝜃4𝑖)
∑ 𝑧4𝑖

(𝑡)
+α4𝑖

2013
𝑡=2011 (𝜃5𝑖)

∑ 𝑧5𝑖
(𝑡)

+α5𝑖
2013
𝑡=2011 ]𝑑𝜽𝒊  

∝ 
1

Г(α1𝑖)Г(α2𝑖)Г(α3𝑖)Г(α4𝑖)Г(α5𝑖)
* 

Г(∑ 𝑧1𝑖
(𝑡)2013

𝑡=2011 +α1𝑖)Г(∑ 𝑧2𝑖
(𝑡)2013

𝑡=2011 +α2𝑖)Г(∑ 𝑧3𝑖
(𝑡)

+2013
𝑡=2011 α3𝑖)Г(∑ 𝑧4𝑖

(𝑡)
+α4𝑖

2013
𝑡=2011 )Г()

∑ 𝑧5𝑖
(𝑡)

+α5𝑖
2013
𝑡=2011 )

Г[(∑ 𝑧1𝑖
(𝑡)2013

𝑡=2011 +α1𝑖)+(∑ 𝑧2𝑖
(𝑡)2013

𝑡=2011 +α2𝑖)+(∑ 𝑧3𝑖
(𝑡)

+2013
𝑡=2011 α3𝑖)+(∑ 𝑧4𝑖

(𝑡)
+α4𝑖

2013
𝑡=2011 )+()

∑ 𝑧
5𝑖
(𝑡)

+α5𝑖
2013
𝑡=2011 )]

 

To draw samples of α and θ, we use a Gibbs sampler. First we sample each  αi component of α using a 
Metropolis-Hastings step. We use a Gamma(αi, 1) as our proposal density, that is a gamma distribution 
centered at the previous αi. Once α is sampled, we can sample θ directly from the Dirichlet distribution. 

Model 2: Pitcher-Season-Specific Model 

For a single player i in season t: 

L(𝒛𝒊
(𝒕)

|𝜽𝒊
(𝒕)

) = (
𝑛𝑖

(𝑡)

𝑧1𝑖
(𝑡)

 𝑧2𝑖
(𝑡)

 𝑧3𝑖
(𝑡)

 𝑧4𝑖
(𝑡)

 𝑧5𝑖
(𝑡)) (𝜃1𝑖

(𝑡)
)𝑧1𝑖

(𝑡)

 (𝜃2𝑖
(𝑡)

)𝑧2𝑖
(𝑡)

(𝜃3𝑖
(𝑡)

)𝑧3𝑖
(𝑡)

(𝜃4𝑖
(𝑡)

)𝑧4𝑖
(𝑡)

(𝜃5𝑖
(𝑡)

)𝑧5𝑖
(𝑡)

 



We select Dirichlet as our conjugate prior. To account for the data from previous seasons, we designate 
the weighted sum of previous seasons’ observations as the components of the Dirichlet. b represents a 
decay rate between 0 and 1 that weights the more recent years’ observations more heavily. 

𝜽𝒊
(𝒕)

 ~ Dir(∑
𝑧1𝑖

(𝑘)

𝑏𝑗−𝑘 ,𝑡
𝑘=1 ∑

𝑧2𝑖
(𝑘)

𝑏𝑗−𝑘 ,𝑡
𝑘=1  ∑

𝑧3𝑖
(𝑘)

𝑏𝑗−𝑘 ,𝑡
𝑘=1  ∑

𝑧4𝑖
(𝑘)

𝑏𝑗−𝑘 , ∑
𝑧5𝑖

(𝑘)

𝑏𝑗−𝑘

𝑗
𝑘=1

𝑗
𝑘=1 ) 

We also considered normalizing the counts in the components of the Dirichlet prior to account for 
differences in the number of batters faced by a pitcher from year to year. For example, if a pitcher faces 
50 batters one season instead of the usual 200, his/her number of walks, strikeouts, etc. will necessarily 
be lower as well.  

Ultimately, we decided to not normalize because smaller sample size from one season would also result 
in that data point being weighted less in the Dirichlet.  

We selected a decay rate of 1/2. This has the effect of weighting the most recent season equal to all 
previous seasons combined. If we had more time, a good sensitivity check would have been to test the 
effectiveness of the models when using different decay rates.  

 

For an individual player i season t, the posterior is:  

p(θi
(t)|zi

(1)… z1
(t)) 

 ∝ L(zi
(t)|θi

(t))* π(θi
(t)) 

 ∝ (𝜃1𝑖
(𝑡)

)𝑧1𝑖
(𝑡)

 (𝜃2𝑖
(𝑡)

)𝑧2𝑖
(𝑡)

(𝜃3𝑖
(𝑡)

)𝑧3𝑖
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Hence θi
(t)|zi

(1)… z1
(t) ~ Dirichlet(𝑧1𝑖
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We assume that the θi
(t) are independent, and so we will sample the posterior for each player season 

separately using the custom Dirichlet distribution. 

 

Section 3: Convergence of Posterior Samples in Models 1 and 2 

Overlayed convergence plots across all pitchers. From the Autocorrelation plots, we determine that a 

thinning rate of 10 is reasonable. 



 

 

 



 

 



 

Section 4: R Code Appendix 

# Also available at github.com/aburkard/bayesball 

```{r} 

############# Model 1 

library(MCMCpack) 

library(mcmcplots) 

library(Lahman) 

library(dplyr) 

  

# Note: dplyr must be loaded after MCMCpack, otherwise some functions get overridden. You can use 

unloadNamespace on both packages if this happens. 

  

B <- 1000 

  

# log marginal density of alpha|Z 



ldalpha <- function(alpha, z, prior_exp=0) { 

  J <- nrow(z) 

  z_plus_alpha <- sweep(z, 2, alpha, "+") 

  log_density <- (lgamma(sum(alpha))*(J-prior_exp) - sum(lgamma(alpha))*J) +  

    sum(lgamma(z_plus_alpha)) - 

    sum(lgamma(rowSums(z_plus_alpha))) 

   

  log_density 

} 

  

# density of alpha|Z 

dalpha <- function(alpha, z) { 

  exp(ldalpha(alpha, z)) 

} 

  

# Generates samples given a dataframe of pitchers 

# Should be used with a dataframe containing multiple rows all of one pitcher 

generate_samples <- function(x) { 

  #z <- matrix(c(x$HR, x$SO), ncol=N_BINS) 

  z <- matrix(c(x$HR[1:3], x$SO[1:3], x$BB[1:3], x$HBP[1:3], x$BIP[1:3]), ncol=5) 

  z_predict_actual <- matrix(c(x$HR[4:6], x$SO[4:6], x$BB[4:6], x$HBP[4:6], x$BIP[4:6]), ncol=5) 

  z_predict_actual <- colSums(z_predict_actual) 

  set.seed(1234) 

  samples = sample_a_theta(z, z_predict_actual, sum(x$IPouts[4:6]/3)) 

  #print(samples["Theta"]) 



  #print(samples["alpha"]) 

   

  alpha <- samples$alpha 

  colnames(alpha) <- c("alpha_hr","alpha_so","alpha_bb","alpha_hbp","alpha_bip") 

  #print(colMeans(alpha)) 

  #print(colMeans(samples$acceptance_rate)) 

  alpha_chain = mcmc(alpha) 

   

  #alpha_chains[[length(alpha_chains)+1]] <<- alpha_chain 

  #mcmcplot(alpha_chain) 

   

   

  #Theta <- samples$Theta 

  #theta_so <- unlist(Theta)[seq(nrow(z)*1+1, B*5*nrow(z), 5*nrow(z))] 

  #print(Theta) 

  #print(theta_so) 

  #plot(density(theta_so)) 

  return(x) 

} 

  

# Gibbs MH sampler for generating alpha, theta 

sample_a_theta <- function(z, z_predict_actual, innings) { 

  N_BINS <- NCOL(z) 

  J <- nrow(z) 

   



  alpha <- matrix(0, nrow=B, ncol=N_BINS) 

  alpha_acceptance <- matrix(0, nrow=B, ncol=N_BINS) 

  Theta <- list(matrix(0, nrow=J, ncol=N_BINS)) 

  mean_z <- colMeans(z) 

  var_z <- apply(z, 2, var) 

  prop_alpha <- mean_z^2/var_z 

  prop_beta <- mean_z/var_z 

  alpha[1,] <- rep(1,N_BINS) #c(2231,21294,5630,1090,54396)# 

   

  z_plus_alpha <- sweep(z, 2, alpha[1,], "+") 

  theta <- t(apply(z_plus_alpha, 1, function(x) rdirichlet(1, x))) 

  Theta[[1]] <- theta 

   

  for (i in 2:B) { 

    for (k in 1:N_BINS) { 

      J_alpha <- alpha[i-1, k] 

      J_beta <- 1 

      alpha_star <- rgamma(1, J_alpha, J_beta) 

      alpha_star_vec <- alpha[i-1,] 

      alpha_star_vec[k] <- alpha_star 

       

      log_rho <- ldalpha(alpha_star_vec, z) - 

        log(dgamma(alpha_star, J_alpha, J_beta)) - 

        ldalpha(alpha[i-1, ], z) + 

        log(dgamma(alpha[i-1, k], J_alpha, J_beta)) 



       

      rho <- exp(log_rho) 

       

      # Print diagnostics 

      #print("") 

      #print(paste("alpha_star ", alpha_star)) 

      #print(paste("alpha_star prob ", exp(ldalpha(alpha_star_vec, z)))) 

      #print(paste("proposal prob ", exp(log(dgamma(alpha_star, J_alpha, J_beta))))) 

      #print(paste("prev alpha prob ", exp(ldalpha(alpha[i-1, ], z)))) 

      #print(paste("prev proposal prob ", exp(log(dgamma(alpha[i-1, k], J_alpha, J_beta))))) 

      #print(paste("log rho ", log_rho)) 

       

      u <- runif(1) 

      if (u < min(rho, 1)) { 

        alpha[i, k] <- alpha_star 

        alpha_acceptance[i, k] = 1 

      } 

      else { 

        alpha[i, k] <- alpha[i-1, k] 

      } 

    } 

     

    z_plus_alpha <- sweep(z, 2, alpha[i,], "+") 

    #theta <- t(apply(z_plus_alpha, 1, function(x) rdirichlet(1, x))) 

    #Theta[[i]] <- theta 



  } 

  #print(tail(alpha)) 

  #print(colMeans(alpha)) 

  #print(colMeans(alpha_acceptance)) 

  #print(Theta[[B]]) 

  #theta_list <- unlist(Theta) 

  #s1_HR <- theta_list[seq(1+J*1, length(theta_list), J*N_BINS)] 

  #plot(density(s1_HR)) 

   

  alpha <- alpha[(B/2):B,] 

  Theta <- Theta[(B/2):B] 

  #in_cis <<- in_cis + predict_in_ci(alpha, z_predict_actual) 

  fip <- calculate_fips(alpha, z_predict_actual, innings) 

  fips_1 <<- c(fips_1, fip) 

  list("Theta"=Theta, "alpha"=alpha, "acceptance_rate"=alpha_acceptance) 

} 

  

#alpha_chains <- list() 

in_cis <- c(0,0,0,0,0) 

fips_1 <- c() 

  

pitchers <- Pitching %>% 

  filter(yearID >= 2011) %>% 

  #filter(playerID == "salech01") %>% 

  filter(BFP >= 200) %>% 



  mutate_if(is.factor, as.character) %>% 

  mutate(BIP = BFP-(HR+BB+HBP+SO)) %>% 

  filter(!is.na(HR) && !is.na(BB) && !is.na(HBP) && !is.na(SO) && !is.na(BFP)) %>% 

  select(playerID, yearID, IPouts, HR, BB, HBP, SO, BIP, BFP) %>% 

  group_by(playerID, yearID) %>% 

  summarise_all(funs(sum)) %>% 

  group_by(playerID) %>% 

  filter(min(yearID) == 2011 & max(yearID) == 2016 & length(yearID) == 6 & min(HBP)>0) %>% 

  filter(yearID >=2011 & yearID <= 2016) %>% 

  do(generate_samples(.)) 

  

pitchers 

nrow(pitchers) 

mcmcplot(alpha_chains) 

``` 

```{r} 

calculate_fips <- function(alpha, z_predict_actual, innings) { 

  #chain <- alpha_chains[[1]] 

  #chain <- chain[5001:10000,] 

  #mcmcplot(chain) 

  #n_2014 <- 1000 

  n <- sum(z_predict_actual) 

  theta <- t(apply(alpha, 1, function(x) rdirichlet(1, x))) 

  z_pred <- t(apply(theta, 1, function(x) rmultinom(1, n, x))) 

   



  meds <- apply(z_pred, 2, median) 

  meds 

  fip <- (13*meds[1] + 3*(meds[4]+meds[3])-2*meds[2])/innings 

  fip 

} 

  

predict_in_ci <- function(alpha, z_predict_actual) { 

  #chain <- alpha_chains[[1]] 

  #chain <- chain[5001:10000,] 

  #mcmcplot(chain) 

  #n_2014 <- 1000 

  n <- sum(z_predict_actual) 

  theta <- t(apply(alpha, 1, function(x) rdirichlet(1, x))) 

  z_pred <- t(apply(theta, 1, function(x) rmultinom(1, n, x))) 

  #colMeans(theta_2014) 

  #quantile(theta_2014[,2],probs=c(.025,.975)) 

  #print(apply(z_pred, 2, function(x) quantile(x, probs=c(.025,.975)))) 

  #print(z_predict_actual) 

  in_ci <- z_predict_actual >= z_pred[1,] & z_predict_actual <= z_pred[2,] 

  in_ci 

} 

  

calculate_fips(blah_alpha, z_predict_actual, 450) 

``` 

  



```{r} 

plot(fips_actual, eras, main="Model 1 FIP 2014-16 ERA Regression", ylab="2014-16 ERA", xlab="Median 

Posterior FIP") 

fit1 <- lsfit(fips_1, eras) 

abline(fit1$coefficients[1], fit1$coefficients[2], col="blue") 

cor(eras,fips_1)^2 

``` 

 

```{r} 

library(inline) 

sign <- signature(x="numeric", n="integer", d="numeric") 

  

code <- " 

  for (int i=1; i < *n; i++) { 

    x[i] = x[i-1]*d[0] + x[i]; 

  }" 

  

c_fn <- cfunction(sign, 

                  code, 

                  convention=".C" 

) 

  

weighted_sum <- function(vector, decay){ 

  c_fn(x=vector, n=length(vector), d=decay)$x 

} 

``` 



  

```{r} 

# Model II 

  

library(MCMCpack) 

library(Lahman) 

library(dplyr) 

  

# Note: dplyr must be loaded after MCMCpack, otherwise some functions get overridden. You can use 

unloadNamespace on both packages if this happens. 

  

B <- 10 

  

pitchers <- Pitching %>% 

  filter(yearID >= 2011) %>% 

  #filter(playerID == "salech01") %>% 

  filter(BFP >= 200) %>% 

  mutate_if(is.factor, as.character) %>% 

  mutate(BIP = BFP-(HR+BB+HBP+SO)) %>% 

  filter(!is.na(HR) && !is.na(BB) && !is.na(HBP) && !is.na(SO) && !is.na(BFP)) %>% 

  select(playerID, yearID, IPouts, HR, BB, HBP, SO, BIP, BFP, ERA, IPouts) %>% 

  group_by(playerID, yearID) %>% 

  summarise_all(funs(sum)) %>% 

  group_by(playerID) %>% 

  filter(min(yearID) == 2011 & max(yearID) == 2016 & length(yearID) == 6 & min(HBP)>0) %>% 

  filter(yearID >=2011 & yearID <= 2016) %>% 



  ungroup() 

  

waic <- function(samples, obs) { 

  llpd <- log( 1/B * sum(apply(samples, 1, function(theta) ddirichlet(obs, theta)))) 

   

  inner_sum <- 1/B*sum(apply(samples, 1, function(theta_j) { 

      log(ddirichlet(obs, theta_j)) 

    })) 

   

  pwaic <- 1/(B-1)* sum(apply(samples, 1, function(theta_b) { 

    s <- log(ddirichlet(obs, theta_b)) - inner_sum 

    s^2 

  })) 

   

  -2*llpd + 2*pwaic 

} 

  

get_val <- function(total_HR,total_SO,total_BB,total_HBP,total_BIP, aHR, aSO, aBB, aHBP, aBIP) { 

  samples <- rdirichlet(B, c(total_HR,total_SO,total_BB,total_HBP,total_BIP)) 

  obs <- c(aHR, aSO, aBB, aHBP, aBIP) / sum(c(aHR, aSO, aBB, aHBP, aBIP)) 

  #s_waic <- waic(samples, obs) 

  df_list <- apply(samples, 2, function(x) quantile(x, probs=c(.025, .975)))  %>% 

    setNames(c("HR_lwr", "HR_upr", "SO_lwr", "SO_upr", "BB_lwr", "BB_upr", "HBP_lwr", "HBP_upr", 

"BIP_lwr", "BIP_upr")) %>% 

    as.list()  

  #df_list["waic"] <- s_waic 



  df <- df_list %>% as.data.frame() 

   

  df$medHR <- median(samples[,1]) 

  df$medSO <- median(samples[,2]) 

  df$medBB <- median(samples[,3]) 

  df$medHBP <- median(samples[,4]) 

  df$medBIP <- median(samples[,5]) 

  df 

} 

  

sample_all <- function(decay_rate=1/2) { 

  result <- suppressWarnings(pitchers %>% 

    select(playerID, yearID, BFP, HR, BB, HBP, SO, ERA, IPouts) %>% 

    mutate(BIP = BFP-(HR+BB+HBP+SO)) %>% 

    #filter(playerID=="salech01") %>% 

    group_by(playerID) %>% 

    mutate(start_year = min(yearID))  %>% 

    mutate(total_BFP = weighted_sum(BFP, decay_rate), 

           total_HR = weighted_sum(HR, decay_rate), 

           total_SO = weighted_sum(SO, decay_rate), 

           total_BB = weighted_sum(BB, decay_rate), 

           total_HBP = weighted_sum(HBP, decay_rate), 

           total_BIP = weighted_sum(BIP, decay_rate) 

           ) %>% 

    mutate(aHR = HR/BFP, aSO = SO/BFP, aBB = BB/BFP, aHBP = HBP/BFP, aBIP = BIP/BFP) %>% 



    rowwise() %>% 

    do(cbind(., get_val(.$total_HR,.$total_SO,.$total_BB,.$total_HBP,.$total_BIP, 

                        .$aHR,.$aSO,.$aBB,.$aHBP,.$aBIP))) %>% 

    mutate( 

      inHR = aHR >= HR_lwr & aHR <= HR_upr, 

      inSO = aSO >= SO_lwr & aSO <= SO_upr, 

      inBB = aBB >= BB_lwr & aBB <= BB_upr, 

      inHBP = aHBP >= HBP_lwr & aHBP <= HBP_upr, 

      inBIP = aBIP >= BIP_lwr & aBIP <= BIP_upr 

      ) 

    ) 

  result 

} 

  

#for (decay_rate in c(0.2, 0.5, 0.8)) 

x <- sample_all(decay_rate=1/2) 

sum(x$inHR)/nrow(x) 

sum(x$inSO)/nrow(x) 

sum(x$inBB)/nrow(x) 

sum(x$inHBP)/nrow(x) 

sum(x$inBIP)/nrow(x) 

#x2<- sample_all(decay_rate=.2) 

#x3 <- sample_all(decay_rate=.8) 

x 

#x2 



#x3 

``` 

 

```{r} 

model2_in_cis <- c(0,0,0,0,0) 

is_in_ci <- function(x) { 

  x = c( 

    between(x$aHR[6], x$HR_lwr[3], x$HR_upr[3]), 

    between(x$aSO[6], x$SO_lwr[3], x$SO_upr[3]), 

    between(x$aBB[6], x$BB_lwr[3], x$BB_upr[3]), 

    between(x$aHBP[6], x$HBP_lwr[3], x$HBP_upr[3]), 

    between(x$aBIP[6], x$BIP_lwr[3], x$BIP_upr[3]) 

  ) 

  model2_in_cis <<- model2_in_cis+x 

} 

x 

x %>% 

  group_by(playerID) %>% 

  do(is_in_ci(.)) 

  

model2_in_cis/50 

``` 

```{r} 

model2_in_cis <- c(0,0,0,0,0) 

is_in_ci <- function(x) { 



  x = c( 

    between(x$aHR[6], x$HR_lwr[3], x$HR_upr[3]), 

    between(x$aSO[6], x$SO_lwr[3], x$SO_upr[3]), 

    between(x$aBB[6], x$BB_lwr[3], x$BB_upr[3]), 

    between(x$aHBP[6], x$HBP_lwr[3], x$HBP_upr[3]), 

    between(x$aBIP[6], x$BIP_lwr[3], x$BIP_upr[3]) 

  ) 

  model2_in_cis <<- model2_in_cis+x 

} 

x 

x %>% 

  group_by(playerID) %>% 

  do(is_in_ci(.)) 

  

model2_in_cis/50 

``` 

 

```{r} 

eras <- x$ERA[seq(4, length(x$ERA), 6)] 

fips <-(13*x$medHR + 3*(x$medHBP+x$medBB)-2*x$medSO)*x$BFP/(x$IPouts/3) 

fips <-fips[seq(3, length(x$ERA), 6)] 

plot(fips, eras, main="Model 2 2014-16 ERA Regression", ylab="2014-16 ERA", xlab="Median Posterior 

FIP") 

fit<- lsfit(fips, eras) 

abline(fit$coefficients[1], fit$coefficients[2], col="blue") 

cor(eras,fips)^2 



  

fips_actual <- (13*x$HR + 3*(x$HBP+x$BB)-2*x$SO)/(x$IPouts/3) 

fips_actual <-fips_actual[seq(3, length(x$ERA), 6)] 

plot(fips_actual, eras, main="Industry FIP 2014-16 ERA Regression", ylab="2014-16 ERA", xlab="FIP") 

fit2<- lsfit(fips_actual, eras) 

abline(fit2$coefficients[1], fit2$coefficients[2], col="blue") 

cor(eras,fips_actual)^2 

  

``` 


